
Theor Chim Acta (1994) 89:123-136 Theoretica 
Chimica Acta 
© Springer-Verlag 1994 

Model calculations testing the adiabatic 
Born-Oppenheimer approximation and its 
non-adiabatic corrections 

D. P. Craig 1, T. Thirunamachandran 2 
1 Research School of Chemistry, Australian National University, GPO Box 4, Canberra ACT 2601, 
Australia; Tel.: 61-62-49-2839, Fax: 61-62-49-0750 

2 Department of Chemistry, University College London, 20 Gordon Street, London WC1H OAJ, UK 

Received October 5, 1993/Accepted April 20, 1994 

Summary. Tests of the accuracy of the Born-Oppenheimer approximation, with 
and without non-adiabatic corrections are made on a model system of two coupled 
harmonic oscillators representing electronic and nuclear motion. Two couplings 
are considered: bilinear and biquadratic in the displacements. For  the energies of 
sublevels of the ground state, the transition dipole moments of the lowest vibra- 
tional transition, and the transition moment in a vibrationally perturbed forbidden 
electronic transition, the Born Oppenheimer result including non-adiabatic cor- 
rections agrees with the exact result up to terms quadratic in the coupling constant. 
In a model of near-resonance of the coupled systems, "level crossing", the adiabatic 
approximation fails, as is well-known. Even with inclusion of the non-adiabatic 
corrections the result does not agree to quadratic terms. However near resonance, 
with physically reasonable values, the methods give results that are very close. In 
all cases inclusion of the non-adiabatic terms is essential. 
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1 Introduction 

Calculations of the properties of molecules are generally built upon the 
Born-Oppenheimer principle of the separation of the motion of light and heavy 
particles [1]. This is commonly done in the adiabatic approximation, with elec- 
tronic wave functions found for a range of fixed nuclear configurations. The nuclear 
position-dependence of the electronic wave functions provides the potential func- 
tion for nuclear motion. 

In the outcome the system wave function is expressed as a product 

~P(q, Q) = ~P(q, Q)z(Q),  (1.1) 
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qS(q, Q), the electronic wave function, is a function of the electron coordinates q for 
fixed values of the nuclear coordinates Q. z(Q) is the nuclear wave function. 

In cases where it is necessary to go beyond the product (1.1) the expansion (1.2) 
is adopted [-2, 3], giving non-adiabatic state functions, 

T(q, Q) = ~ c,,,O"(q, Q)Z.m(Q), (1.2) 
n , m  

where n is an electronic index, and ;(,,,(Q) is the ruth vibrational level for electronic 
state n. 

We are concerned with the so far unresolved questions, first of the convergence 
of the expansion (1.2), and second whether the convergence limit is an exact 
solution of the complete Hamiltonian. In an approach to these problems we show 
that for two model Hamiltonians in a range of calculations for off-resonance 
problems the non-adiabatic wave function (1.2) and the "exact" solutions give 
results equal up to terms quadratic in the coupling constant for nuclear-electron 
interaction. The extent to which the adiabatic approximation (1.1) requires non- 
adiabatic corrections depends strongly on the physical property, and is not simply 
related to the relative nuclear masses and frequencies. In the limit of near-reson- 
ance of potential curves a more complex situation will be described. 

The Hamiltonian for a molecule can be expressed in Eq. (1.3): 

H = TN + Te + U(q, Q), (1.3) 

where TN and Te are the nuclear and electronic kinetic energies and U(q, Q) the 
potential energy in terms of mass-reduced electronic and mass-weighted nuclear 
coordinates, respectively. 

To find approximate solutions to the full Schr6dinger equation 

HT(q ,  Q) = EtP(q, Q), (1.4) 

the Born-Oppenheimer principle may be applied at several levels [-4, 5]. Here we 
t a k e  the adiabatic approximation in which we solve first an electronic equation 

He(~")(q, Q) = E.(Q)(o~")(q, Q), (1.5) 

in which the electronic Hamiltonian He, 

He = ]re + V(q, Q), (1.6) 

is given for a set, or sets, of fixed values of the nuclear coordinates Q, each 
specifying a molecular configuration. The solutions qS"(q, Q) are functions of 
electronic coordinates for the fixed (2 values, which are treated as parameters. 
For  nuclear masses very large compared with the electron mass this is a physically 
realistic approximation. 

For  an electronic state n the wave functions for the nuclear motion are found by 
solving 

(TN + U.(Q))Z.m(Q) = E.mZ.m(Q), (1.7) 

where 

• h 2 f 82 U.(Q) E.(Q)-~ ~b(~)(q,Q)-~ot~)(q,Q)dq. (1.8) 



Mode1 calculations testing the adiabatic Born-Oppenheimer approximation 125 

It is generally accepted that the adiabatic approximation, where the approximation 
to the solutions 7~(q, Q) of the full Schr6dinger equation in Eq. (1.4) is the single 
product given in expression (1.1), is satisfactory in the calculation of energies. For 
other properties, such as transition moments, circular dichroism, and vibrationally 
induced intensity the performance of the adiabatic approximation and its non- 
adiabatic corrections is not well established, though not infrequently used. Some 
authors employ the so-called crude adiabatic approximation [4]. 

It is rather striking that the closeness of the BO approximation has not been 
established in a general way, only by reference to particular special cases [4]. This 
is not surprising, given that exact solutions are not known except in the very 
simplest systems. In others there is nothing against which the approximate solution 
can be matched. It becomes attractive to seek types of coupled dynamical systems 
admitting exact solutions. These can be compared with solutions found in BO 
approximation. If there is agreement, confidence in the approximation is increased. 
If differences are found, their significance will need to be taken into account in 
dealing with molecular calculations. 

The approach in this paper is to examine a model system in which both the 
electronic and nuclear motions are harmonic oscillators. Where these motions are 
uncoupled the model Hamiltonian is, now expressed in displacements x and y, 

p2 1 z 2 P~ 1 = q-~mco x q- + ~ M f 2 2 y  2. (1.9) 

A single electron of mass m oscillates at frequency co and a nucleus of mass M at 
frequency O. We now introduce a coupling, so that the electron potential energy 
depends on the nuclear position y. This coupling is not necessarily related phys- 
ically to the electrostatic force. The Hamiltonian (1.10) includes a bilinear coupling, 
and Eq. (1.11) a quadratic. 

Ht = Ho + cxy,  (1.10) 

Hq = Ho + ½cmco2x2y 2. (1.11) 

The present work has the purpose of comparing the energy eigenvalues with and 
without making the Born Oppenheimer approximation. 

2 Energies of bilinearly coupled non-identical oscillators 

Ground state energy in second order perturbation theory 

The discussion of this case, with Hamiltonian (1.10), is a development of our 
earlier result [6] for coupled harmonic motions for particles of equal masses and 
frequencies. 

The Hamiltonian (2.1), 

p~ p Z 1 1 2 2 H=~m+~-M +-~mco2x2 +-~Mf~ y +cxy, (2.1) 

describes harmonic oscillators for two particles of masses m and M, frequencies 
co and f2, coupled by a potential cxy,  c being a coupling constant. Notionally we 
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think of x, m and co applying to electronic motion and y, M and O to nuclear 
motion. We expect m ~ M, and co > O, but do not use these inequalities in the 
development. 

It is easily seen that Eq. (2.1) can be solved exactly by a rotation of axes by 
0 =½tan-l(2c/(MO 2 -  mco2)). However for later comparison with the BO 
method it is better to treat the final term as a perturbation on solutions for the first 
four terms. These are products of simple harmonic oscillators. We denote by In, v) 
product functions for the nth state of the oscillator representing electronic motion, 
and the vth state of nuclear motion. 

The energy of the ground state including second-order coupling to I1, 1) is 
given by 

1 hco + hf2 - -  (2.2) 
2 4mcoM(2 ~ "  

Adiabatic approximation 

The result (2.2) will now be compared with that from the adiabatic approximation 
with non-adiabatic corrections. The electronic Hamiltonian is 

p2 l 2 2 I M~22 2 (2.3) ue ~ y ,  +-~mco x + cxy +-~ 

y being treated as a parameter. The term linear in x can be removed by a shift of 
origin, 

x' = x q cy 
mco2. (2.4) 

The eigenvalues of He are then found to be 

n + he) 2mco 2 + ~ Mf~Zy a. (2.5) 

According to the adiabatic approximation this expression becomes the potential 
determining the y-motion, through 

__ ~ y2, (2.6) H =  n +  h e ) + - f ~ + ~ M g 2 2  1 mmco2Qzj 

with eigenvalues 

C2 1/2 

The ground state energy, to order c 2, is 

l hco 1 c2h + ~ hO (2.8) 
4mMco 2 ~" 

This adiabatic value approaches the result (2.2) from the complete Hamiltonian 
for the nuclear frequency Q very much smaller than the electronic frequency co. 
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Note that, if k = moo 2 and K - - M r 2 2  are the respective force constants, then 
(O/co) 2 = (K/k)(m/M), illustrating the importance of both the masses and the 
potentials. 

Non-adiabatic corrections 

Expression (2.8) can be brought into precise agreement with the result (2.2) by 
making the non-adiabatic corrections. Following the usual development [3] the 
diagonal energy correction is given by 

2M )~00(Y) (~(°)(x, y) ~ ~(°)(x, y) dxzoo(Y) dy. (2.9) 

Using expression (2.5) we find for the diagonal correction 

c2h 
4mM(o 3" 

(2.10) 

The off-diagonal ("momentum-momentum')  matrix element joins [ 0; 0)  to [ 1; 1), 
where we use the notation with semicolon, In; v) - O(")(x, Y))~,v(Y), 

 fz11 (y) (2.11) 
with a second order energy shift of 10; 0 )  equal to 

C2h 

4raM co3(co + f2) 
(2.12) 

leading to a total ground state energy in adiabatic approximation with non- 
adiabatic corrections equal to the result (2.2) from the complete Hamiltonian, both 
taken to order c 2. 

First excited state 

Anticipating discussion of the vibrational transition moment 10, 1 ) ~  10, 0 )  we 
calculate the energy of the first excited vibrational level of the lowest electronic 
state. For the complete Hamiltonian, with perturbation theory applied to eigen- 
functions of the first four terms of Eq. (2.1) we note that 10, 1) is coupled to 11, 0 )  
and I1, 2). The total energy of 10, 1), corrected to order c 2, is given by 

l h  3 c2h { 1 + 2 } 
o)+ ha - -  (2.13) 

4m / e 

In adiabatic approximation the energy of l0; 1) is 

1 3 ( c 2 ,]1/2 
~hco+~hf2 1 2rnM~2g2a ] . (2.14) 
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The diagonal correction is the same as for the ground state, given in expression 
(2.10). The off-diagonal corrections result from the coupling to I1; 0)  and I1; 2). 
Their sum, to c 2, is 

c2hO ( 1  2 )  
4mMco 3 -~7~- ~ + ~ - ~  (2.15) 

giving, with expressions (2.14) and (2.10) a total equal to expression (2.13) found 
from the complete Hamiltonian (2.1) up to terms in c 2. 

3 Vibrational transition moment for bilinearly coupled oscillators 

The moment for 10, 1) +-- 10, 0)  in the method based on the complete Hamiltonian 
(2.1) without the Born-Oppenheimer approximation is found in a straightforward 
way. We need the matrix element of the total electric dipole moment - e(x - y) 
connecting the perturbed initial and final states. 

In order to get the moment correct to terms in c 2, we need perturbed wave 
functions as follows, 

10, 0 ) '  = Ng{10, 0)  + 2(~1~) I 1, 1) + 2(o22)10, 2)}, (3.1) 

where the prime refers to the perturbed wave function. 
and 

~(1) = _ c (3.2) 

,2> ~f~c2(  1 ) (  1 ) 1 (3.3) 

For the excited state 

, , (n i l ,  0> ± ,,(1) 1, 2)}, (3.4) IO, 1)' = Ne{10, 1) + PIO w /'12 

where 

~¢~°~ = - c \ 2 - ~ 1  \ 2 ~ 1  ~ 6  (3.5) 

( 1 ~1/2 ( 1  ~i/2 ( 1 ~ 
#~ - xf2c \~mco ] \2MO,] \co + QJ" (3.6) 

It is not necessary to include terms in c 2 in 10, 1)': their contribution to the 
transition moment appears only in higher order. 

The transition moment joining Eqs. (3.1) and (3.4) has contributions by elec- 
trons (from 11, 0)  *-- 10, 0)  and [1, 2)  ~ 10, 2))  as well as by nuclei. The expression 
for the transition moment is readily found to be 

c 2co 
- em.Ne \ 2--~-6) 

C 2 ( 1 ) c o 2 + 3 c o 0 - - 2 0 2 " (  
+ ~ ico + h~ e(co2 _ a~5 J (3.7/ 
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After evaluation of N o and Ne the result is 

/ h "~1/2{ C C 2 ( 0 ) 2 - - 3 0 2 )  } 

e ~ - ~ )  1 q m(co 2 _ ~22) + 4mM~2~ (co +b~-(~-~-f2)  2 ' (3.8) 

In Born-Oppenheimer approximation we begin with ground and excited state 
wave functions, including the non-adiabatic corrections. To get the transition 
moment correct to c 2 we need the first- and second-order corrections from the 
momentum-momentum coupling expression (2.11). For the ground state 

10; 0>' = no{10; 0> + c~12ll; 1> + ~o2N(2)10; 2>}, (3.9) 

where 

~(1) __ C ( E  ~ 1/2 1 
11 2(mM)1/2 \co3j  co + (2' (3.10) 

o 2 -  8raM ~5 ~ . (3.11) 

Likewise for the excited state, 

10; 1 > ' =  ne{]0; 1> + fl(~l o) I1; 0> + vlzt~(1)I1; 2>}, (3.12) 

where 

fl(l)__ C ( E ~ 1 / 2 ( ~  ) 
lO 2(mM)1/2 \co3] , (3.13) 

x/~c (~2"]1/2(  1 ) 
fl(~l) 2 - 2(mM)1/2 \ ~ g ]  ~ . (3.14) 

Collecting terms, and using the modified frequency for y motion 

f2' = f2(1 - c2/mMco2f22) 1/2 (3.15) 

after a little algebra, we find that the transition moment joining Eq. (3.9) and (3.12) 
is equal, to terms in c z, to expression (3.8). 

Thus for bilinear coupling the energies of the states for the lowest vibrational 
transition, and the transition moment, are equal to terms quadratic in the coupling 
constant. 

4 Energies of biquadratically coupled oscillators 

Energies in second order perturbation theory 

The Hamiltonian (1.11) for quadratic nuclear electron coupling is 

p2 1 2 2 p2 l 1 2 2 2 = ÷~mco x ÷ ÷ MQZy 2 ÷~cmco x y . (4.1) 
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In treating the complete Hamiltonian, without the Born-Oppenheimer approxi- 
mation, we treat the last term as a perturbation on the eigenfunctions belonging to 
the first four terms as the unperturbed Hamiltonian. As before the eigenfunctions 
are products of harmonic oscillator wave functions belonging to x, m, co and 
y, M, Q, respectively. 

With standard perturbation theory the total ground state energy, to terms in c 2, 

co 2e) ) 1 1 ch2co c2h3e) 1 + + ~ (4.2) 
~hco +~hf2 -~ 8MO 64M2Q 2 ~ " 

A similar calculation applied to the state 10, 1 ), allowing for coupling to 12, 1), 
10, 3)  and 12, 3) gives 

3 3ch2e) C2h3e) ( 3CO 6 O ) )  lhe)+ h O + - -  (4.3) 
-2 8MF2 6 4 M  2 ~.~2 9 + ~ -  + ~ , 

leading to the energy interval 

Ch2e) C2~/3co ( 209 4 O ) )  
E ° ' I - E ° ' ° = h O +  M ~  64M20 2 8 + - - 0 - + ~  " (4.4) 

Adiabatic approximation 

In the adiabatic approximation we have from Eq. (4.1) the electronic Hamiltonian 

p~ 1 2 2 1  1 2 2  = + ~ mco X ( -}- cy 2) + ~ M~2 y , (4.5) He ~m 

where y is now a parameter. The energy levels of the electronic oscillator are 

(n + ~)he)(1 +cy2) 1/2 (4.6) 

from which, following the usual development, the nuclear states are determined to 
terms in c 2 by 

/ '  + Ma + - l   coc2/ + + (4.7) 

We now treat the third term of Eq. (4.7) as a perturbation. The unperturbed 
solutions are for an oscillator of frequency O(1 + he)c/2M~22) 1/2 so that including 
the perturbation correction the ground state energy to terms in c 2 is 

1 1 h2coc c2hge) 3 + , (4.8) 
he) + ~ hf~ + 8Mf~ 64M 2 ~2 ~ 

which expression (4.4) approaches for ~ ~ co. 
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Non-adiabatic corrections 

To take account of the non-adiabatic corrections we must broaden the discussion 
from the bilinear case. Here the "kinetic" coupling to the ground state 

2M Znm(Y) (~(")(X, y)~y2 (J(O)( x' y)dxzoo(Y) dy (4.9) 

has, in addition to c2-dependent diagonal term n = m = 0, off-diagonal terms that 
are linear and quadratic in c. The off-diagonal quadratic term is not needed for the 
energy calculation but enters the calculation of the transition moment, discussed 
later. 

For  the diagonal term, with use of 

moo(1 + cy2) 1/2 
~b°(x,y) = (/3/~)l/4e-PX~/2; /3 = h ' (4.10) 

we get for the x-integral of expression (4.9) 
h2 (6/3~2 1 C2h2y 2 

8Mkay/ 8/3 2 - 16~ (4.11) 

up to terms in c 2. Completing the y-integration we find for the diagonal correction 

c2h 3 

32M2f2. (4.12) 

The off-diagonal term, linear in c, couples the ground state 10; 0> to 12; 0>. 

2Mh2f f 0y ~02 h2C )~2o(Y) q$(2)(x, Y) ~b(°)( x, Y) dxgoo(Y) dy - 4 x ~  (4.13) 

The states 10; 0> and 12; 0> are also joined by the momentum momentum coup- 
ling. The contribution is equal and opposite to Eq. (4.13), thus cancelling the 
"kinetic" coupling contribution. 

The momentum-momentum coupling also connects the ground state to 12; 2> 
the corresponding second-order energy correction being 

C2h 3 1 
-- 32M 2 (co + (2)" (4.14) 

The sum of expressions (4.8), (4.12) and (4.14) gives a result for the ground state 
energy equal, to c 2, to expression (4.2) found in the calculation based on the 
complete Hamiltonian. 

In the same way it is found that the energy of the state 10; 1> and the lowest 
vibrational interval, are the same in the adiabatic approximation with non- 
adiabatic correcting terms. 

5 Vibrational transition moment for biquadratically coupled oscillators 

For comparison of the transition moment for 10, 1) +- 10, 0)  we need perturbed 
wave functions correct to c g. In addition in order to get a transition moment 
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containing all terms in C 2 w e  must include the second-order contribution by 10, 2) 
as well as its first-order term. The intermediate states are 12, 0), 12, 2), 10, 0)  and 
]0, 2), the latter two being initial and final states, acting as intermediate states. The 
perturbed ground state is 

[ 0 , 0 ) ' = N  a 10,0) 8 ~ \ O J ~  8V/-~M h h 10'2) 

8M\ f2]  - ~  12,2) + \ 8 M /  

× ~ + ~ + 10, 2) . (5.1) 
m +  

For the excited state 

10,1) '=Ne 10,1) 8v/~ M ~ ~12,1)  

_,/ich A 
8~M 8M \ o /  

In the perturbed wave functions (5.1) and (5.2), only those second-order terms that 
can give non-zero contributions to the moment have been included. The transition 
moment includes terms from the nuclear motion only. After including the terms to 
c 2 in the expansion of the normalizers No and Ne it is given by 

(o) 1 
e ( l' O l y l O' O )' = e ~~-)!)l-O ) ~ -~ -~ 

+ \ 8 M ]  --~ + 0(09 + 12) + 212 ---~ 

3 1 } )  
(0 2 ] (0((0 "JI- O )  -~- ((0 "l- ~)--"""""~ " (5.3) 

In the Born-Oppenheimer approximation there is again no electronic component 
in the moment. The perturbed ground state, denoted by 10; 0)' has a correction due 
to coupling to [0; 2) by the perturbation due to the y4 potential term given in 
expression (4.7). There is a second coupling to J0; 2) through the off-diagonal part 
of the kinetic energy given in Eq. (4.13). 

Both the kinetic energy and momentum-momentum terms couple 10; 0) to 
12; 0); these contributions exactly cancel. There is also a momentum coupling to 
[2; 2). The corrected perturbed ground state is given in Eq. (5.4), including all terms 
giving contributions to the transition moment up to order c z. 

10;0) '=N,  1 0 ; 0 ) + \ 8 M j  h (0((0+f2) 

+ 3./~(ch']2/(0\2---- 1 0 
v-\8Mj ;51 ;2) 

\ 8 M J  \-OJ --~ 10; 2)}. (5.4) 
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In the excited state the coefficients of l2; 1) similarly cancel. We have 

[ 0 ; 1 ) ' = N e  ] 0 ; 1 ) + ~  ~-~ co(co+•)  

Now, taking account of the altered nuclear frequency ~2(1 + hcoc/2Mf22) 1/2 and of 
terms to c 2 in the normalizers, we find for the Born-Oppenheimer transition 
moment, for comparison with Eq. (5.3), 

e(1;0ly]0;  0) '  = e \2~M-~] 1 8MQ2 + \~-~] 

2)} 
× + 7 6  + co2(co + 0)2  • (5.6) 

It is readily shown that Eqs. (5.3) and (5.6) are identical, both reducible to 

x ~ -~ ~2co2(co + Q)2 , (5.7) 

showing that the transition moment, in terms in c 2, is the same in the Born-  
Oppenheimer approximation, and according to the complete Hamiltonian. 

6 The  near-resonance  ("curve cross ing")  l imit  

The adiabatic approximation fails in the case that a vibronic level belonging to one 
electronic state is nearly resonant with another pure electronic state, as in the close 
approach of two potential curves. The extent of improvements to the adiabatic 
approximation from non-adiabatic terms is not known. 

In the coupled harmonic oscillator model we take two electronic states, with 
displacements x and y, frequencies cox and coy, and a vibration with displacement 
~ and frequency/2 built on the x-state, co~ + ~ ~ coy. Occupation numbers in the 
oscillators x, y and d are denoted [nx, ny; n~). The base states 10, 1; 0) and 11, 0; 1) 
are nearly in resonance. 

In a calculation with the complete Hamiltonian, with linear coupling, 

2 1 2 2  1 2 2  2 1 p2 PY -~ mcoxX P¢ M/22 ~2 + cxy ~, (6.1) 

the base states are in first-order coupled to each other and to [0, 1; 2), 12, 1; 0),  
t2, 1; 2)  and I1, 2; 1). Since the energy gaps between individual base states and 
others are much greater than the gap c~ = co~ + ~2 - coy between the near-resonant 
pair the corresponding off-resonance shifts are found by perturbation theory. The 
effect is a modified separation ha - 7 between the perturbed (0, 1; 0) '  and 11, 0; 1)', 
where 

2c2A2 ( 1 1 1 )  
- + -+ (6.2) 

7 h co~ - / 2  - coy COx - (2 + my co~ + / 2  + coy 
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and 

Noting that 

h 3 
A 2 - (6.3) 8rn2 M coxcoyf2" 

(1, 0; llcxy~lO, 1; 0) : cA (6.4) 

and solving the 2 x 2 secular problem we have for the level splitting of the near 
resonant states with the complete Hamiltonian (6.1) 

E~ - E2 = {(h6 + 7)2 + 4c2A2}1/2. (6.5) 

In applying the BO approximation we take 

px 2 p~ 1 2 2 1 1 
H e = ~ m + ~ m + S m c o x x  +-~mco2y2 +~Mf22~2 +cxy~. (6.6) 

After coupling the electronic states I1, 0") and 10, 1) to each other and to [2, 1) and 
I1, 2) respectively we find the splitting, in adiabatic approximation, 

Eal a - E~2 d = h6 8c2AZCOY (6.7) 
h(co, ~ - cox ~) 

For typical values near resonance (6.7) is between 1 and 2 orders of magnitude too 
small compared with Eq. (6.5). 

Next, to include the non-adiabatic correction to Eq. (6.7) we use the corrected 
wave function (6.8), excluding a term in J2, 1; 0) which does not contribute to the 
end result, 

c~ 
I1, 0; 1 ) ' =  tl, 0; 1) - 2m(corcox)~/z(coy _ cox)t0, 1; 1) (6.8) 

and find for the momentum-momentum matrix element between [1, 0; 1)'  and 
10, 1; 0) 

O 
cA - -  (6.9) 

COy -- COx 

The 2 x 2 secular equation gives for the BO level splitting, to order c 2, 

Ecl°rr--Ec2°rr=( h2~; coy4~c29~2 f - -  co x ((coy4coY c]__+ COx) coy ~"22-- cox })1/2, (6.10) 

Eq. (6.10) cannot be brought into agreement algebraically with the complete 
Hamiltonian result (6.5). It is however easily shown that for physically reasonable 
values of cox, coy and f2, chosen to be near to the resonance limit 6 = 0, Eq. (6.10) is 
very close to Eq. (6.5). The BO adiabatic approximation, with non-adiabatic 
corrections, gives an excellent result in this case also. 

7 Intensity transfer in a forbidden electronic transition 

The tests so far apply to cases in which corrections are applied to a large zeroth 
order result. The corrections provide the entire result in calculations of intensity 
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stealing caused by vibronic interaction characteristic of many experimental 
spectra. The typical situation is one in which a forbidden electronic transition is 
made weakly allowed by vibrations which couple the forbidden electronic 
transition to an allowed transition from which the intensity can be said to be 
borrowed or stolen. The best known case is in the benzene 260 nm spectrum. 

In the model system both electronic and nuclear motion are again harmonic 
oscillators. The lowest allowed electronic transition is I1, 0 ) ~  10, 0), and the 
lowest forbidden 12, 0)~-[0 ,  0). The forbidden vibronic transition to be con- 
sidered is 12, 1) ~ 10, 0). Vibronic coupling mixes 12, 1) with I1, 0), with the result 
that the forbidden transition gains intensity by borrowing from the allowed 
I 1, 0)  ~ 10, 0). There is a second component from 12, 1) ~ I 1, 1). The bilinear 
interaction is of dipole-dipole form, and so models real systems in which vibronic 
effects depend on the electric dipole moment created by nuclear displacement. 

With use of the complete bilinear coupling Hamiltonian (2.1) we find for the 
ground and excited states 

)(2)12,0 ) -t-2(2) 12,2)} , (7.1) 10, 0 > ' =  no{ I0, o> + ~]1~ 11, 1> + -~20 ,~22 

.(1) 1, 2) + .(2) 10, 1)}. (7.2) 12, 1)' = ne{12, 1) + #1~ll, 0) + ~12 ~01 

The transition moment for [2, 1)' ~ 10, 0) '  has terms linear in c borrowed from the 
allowed transitions I1, 0) ~ ]0, 0) and 12, 1) ~ I1, 1). They are 

[ h '1/2 x/2cz xf2( h y/2 cz -0, (7.3) 
- e l ) 0) + e 0) + 

where - e(h/2m0)) 1/2 is the electronic transition moment I1, 0)  ~ 10, 0). 
Contributions in c 2 represent borrowing from vibrational transitions. They are 

/ h \1/2 { } ~ec2 ~ ~ ) )~2 1 1 2 
(.0((2) - -  ~'~) -~ 60(0 )  -~ ~c~) 0 )2  - -  ~ 2  = 0. (7.4) 

In Eq. (7.4) the quantity ex/2(h/2Mf2) ~/2 is the transition moment for y (nuclear) 
transitions Iv, 2) ~- Iv; 1). 

The vanishing of the y terms in Eq. (7.4) is not surprising, since a forbidden 
electronic transition is not expected to borrow vibrational intensity. 

The result (7.3) needs a more critical appraisal. Representation of electronic 
states as states of a harmonic oscillator has some unsatisfactory features. The 
transition moment for the allowed transition 12, 1 ) +-- I 1, 1) is x/2 times that for 
I1, 0)  ~ 10, 0). This relationship, coupled with the ratio of the coefficients 2~)/#]1 o) 
gives the cancellation in Eq. (7.3). However in real physical systems these rela- 
tionships would not be expected. Also the energy differences ( E l l -  Eoo) and 
(E21 -- Elo ) are equal in the harmonic oscillator model. In real systems they are 
unrelated. We should therefore write in place of Eq. (7.3) the expression for the 
borrowed electronic transition moment 

c)~ 
c Z  M(I1 ,0)  ~ 10,0)) ~ M(12, 1) +-- I 1, 1)) (7.5) 

Ell  -- Eoo E21 - Elo 

in terms of the moments M of the indicated transitions as the result for the 
transition moment for the complete Hamiltonian. 
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In the BO approach to the borrowed transition moment for [2; 1 ) ~ t0; 0)  it is 
necessary to recall the results of Sect. 2, particularly the origin shift (2.5) to remove 
the term linear in x from the electronic Hamiltonian (2.4), and the modified 
frequency (3.16) for y motion. 

The frequency of x motion is unaltered from its uncoupled value co. Thus the 
state ]2; 1) refers to a two-quantum state of x-frequency co, and a one-quantum 
state of y frequency ~2'. 

The perturbed wave functions for ground and excited states bring in the same 
basis states as those for the complete Hamiltonian in Eqs. (7.1) and (7.2). 

10; 0 ) ' =  %{10; 0) + do~ l 1; 1 ) + "~20J(2)12; 0) + -~22~(2) 12; 2) + ,~20~2)' 2; 0)}, (7.6) 

, ,o) 1.0) + ,,(2)10; 1 ) +/~(02]'10, 1)}. (7.7) 12; 1)'  = n0{12; l )  + ~10 ~, ,~o, 

The primed coefficients refer to matrix elements of the kinetic energy. 
If ~2' = ~2 it is found that all unprimed coefficients in Eqs. (7.6) and (7.7) are 

equal to (~2/co) times the corresponding terms for the complete Hamiltonian. 
Accordingly in the case where the allowed transitions are given harmonic oscillator 
transition moments for the linear and quadratic terms the borrowed intensity 
vanishes as in Eqs. (7.3) and (7.4). 

Replacement off2 by the corrected value (2' does not affect these results to order 
c 2. The linear terms in the transition moment are quantities borrowed from 
electronically allowed transitions. As already noted they exactly cancel when 
harmonic oscillator moments are used. If the moments are treated as parameters as 
in the text leading to Eq. (7.5) we do not in general get a cancellation. If the 
moments are M(I 1, 0)  ~ 10, 0)) and M([2; 1) ~ 11, 1)) we find for the borrowed 
moment 

czO ( , /2M(I 1, 0) ~ X0, 0)  + M(12, 1) ~ I 1, 1)), (7.8) 
(co + ~?)co 

which is ~Q/co times the expression (7.5) for the complete Hamiltonian. Account may 
also be taken of different energy denominators for the two terms, as in expression 
(7.5). The two methods do not in this case agree. 
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